COVID-19 and Cancer: Acting on past lessons and learning new ones

eLife has published a special issue containing articles that examine how cancer prevention, control, care and survivorship were impacted by the COVID-19 pandemic.
  1. Eduardo L Franco  Is a corresponding author
  2. Diane M Harper  Is a corresponding author
  1. eLife, United Kingdom

We have seen much new science emerge since January 2020, when the World Health Organization (WHO) declared COVID-19 to be a public health emergency of international concern. Indeed, according to PubMed, researchers have published more than 420,000 articles on COVID-19, SARS-CoV-2 and related topics to date. Moreover, a number of efficacious and safe vaccines and anti-virals were developed in a relatively short period of time. Researchers from many different fields – including virology, epidemiology, molecular biology, vaccinology, and infectious disease modelling – were involved in these efforts.

For those who worked on the global HIV/AIDS epidemic, which began in 1981, the COVID-19 pandemic brought a sense of déjà vu. Back in the early 1980s, with the support of funding agencies, entire academic teams in a wide range of fields reoriented their research programs in an effort to control the effects of the HIV/AIDS epidemic via multiple areas, including epidemiology, HIV pathogenesis, vaccine development, diagnostics and therapy. Four decades later, HIV infection is no longer a death sentence, but there is still a need for research into new treatments and approaches for prevention and disease management, and to ensure that existing treatments are made available to vulnerable populations in low- and middle-income countries. The HIV/AIDS epidemic also resulted in a great deal of new science (almost 500,000 articles), albeit spread out over a longer time frame than the articles published on COVID-19 to date.

There are other parallels. Much like the HIV/AIDS epidemic required new science, new social practices, and new disease-management skills, so did the COVID pandemic. The COVID-19 lockdowns resulted in the suspension of cancer-prevention activities (such as tobacco control and vaccinations for hepatitis B and human papillomavirus) and prevented people in many countries from being screened for cancer. Treatments for patients with newly diagnosed cancers were also delayed, and existing patients – who were already at increased risk of death from the combined comorbidity of their cancer and COVID – had their oncology surgeries postponed. At the same time, like all other patients, cancer patients had to share their physicians with large numbers of COVID-19 patients: the pandemic also led to high levels of stress and burnout among medical staff, which has resulted in many leaving the profession. Understanding the impact of the pandemic on the entire trajectory of cancer – prevention, screening, diagnosis, therapy, survivorship, and end-of-life care – will help us plan interventions and prioritize care to mitigate or prevent the increases in cancer burden that may happen in the medium and long term.

There are also parallels in how the public and politicians responded to HIV/AIDS and COVID-19. Much like we learned to fight the pervasive bigotry that marginalized gay communities in the 1980s, we must learn how to fight the misinformation and disinformation that have hindered efforts to prevent the spread of COVID-19 in many countries. One stark difference between HIV/AIDS and COVID-19 is that we still do not have an effective vaccine against HIV.

The articles included in this special issue cover many different aspects of the impact of the COVID-19 pandemic on cancer across the globe, including both high- and low-income regions and countries. Many of the articles report the results of empirical research studies that captured the extent of the disruptions in care (such as disruptions in screening and vaccination activities, and delays in diagnoses and care). There are also articles about therapeutic interventions for the care of cancer patients affected by COVID-19, and articles about insightful modelling studies that provided projections of the impact of the pandemic on cancer prevention, control, and care pathways.

One of the lessons learned during the pandemic was that cancer control programmes could be made more resilient by taking advantage of recent technological advances: examples of this include the wider use of patient-centred screening for a number of cancers. The pandemic also confirmed the usefulness of videoconferencing for many different activities, including telemedicine, university teaching and virtual clinical appointments.

We thank all the reviewing editors, guest editors and reviewers who were involved in the peer review of the articles in this special issue (their names are on the home page for the special issue and/or in the individual articles), and we hope that it will serve as a valuable source of scientific evidence and information for those working in public health and elsewhere to develop plans to respond to future epidemics and pandemics. We also hope that this collection of articles will be a valuable historical account of what was often an improvised – yet innovative – response to a major public health threat.

Four decades after the start of the HIV/AIDS epidemic, HIV infection and AIDS are still with us. It is likely that SARS-CoV-2 and COVID-19 – and their successors – will also be with us for years to come, and that they will continue to inspire research that can be translated to provide new medicines, diagnostics and treatments. As the articles in this special issue confirm, it is essential that this research also includes work on managing cancer risk during any future public health emergency.

Article and author information

Author details

  1. Eduardo L Franco

    Eduardo L Franco is a Senior Editor at eLife

    For correspondence
    editorial@elifesciences.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4409-8084
  2. Diane M Harper

    Diane M Harper is a Deputy Editor at eLife

    For correspondence
    editorial@elifesciences.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7648-883X

Publication history

  1. Version of Record published: September 6, 2023 (version 1)

Copyright

© 2023, Franco and Harper

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 282
    views
  • 45
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eduardo L Franco
  2. Diane M Harper
(2023)
COVID-19 and Cancer: Acting on past lessons and learning new ones
eLife 12:e91607.
https://doi.org/10.7554/eLife.91607

Further reading

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).

    1. Epidemiology and Global Health
    Zhanwei Du, Lin Wang ... Lauren A Meyers
    Short Report

    Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0%-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.